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CHAPTERS
Radiation Heat
Transfer

8-1 INTRODUCTION

Preceding chapters have shown how conduction and convection heat transfer may be
calculated with the aid of both mathematical analysis and empirical data. We now
wish to consider the third mode of heat transfer—thermal radiation.

Thermal radiation is that electromagnetic radiation emitted by a body as a result
of its temperature.

8-2 PHYSICAL MECHANISM
we say that it is propagated at the speed of light. 3 x 10® m/s. This

speed is equal to the product of the wavelength and frequency of the radiation,

C=AV

where
¢ = speed of light
A = wavelength
v = frequency
The unit for A may be centimeters. angstroms (1 A=10"% cm), or micrometers
(1 pm = 10-%m). A portion of the electromagnetic spectrum is shown in Figure 8-1. Ther-

mal radiation lies in the range from about 0.1 to 100 pm. while the visible-light portion of
the spectrum is very narrow, extending from about 0.35 to 0.75 pm.
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Figure 8-1 | Electromagnetic spectrum.
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The propagation of thermal radiation takes place in the form of discrete quanta, each
quantum having an energy of

E=hv [8-1]
where /i 15 Planck’s constant and has the value

h=6.625%x10"*7.5

is integrated over all wavelengths. the total energy emitted is proportional to absolure
temperature to the fourth power:
Ep=oT? [8-3]

Equation (8-3) is called the Stefan-Boltzmann law. Ep is the energy radiated per unit time
and per unit area by the ideal radiator, and o is the Stefan-Boltzmann constant, which has
the value

0=5.669 x 1073 W/m? - K* [0.1714 x 108 Btu/h - ft> . °R?]

where Ep is in watts per square meter and T is in degrees Kelvin. In the thermodynamic
Radiation Shape Factor

F;_, : fraction of the energy leaving surface 1 which reaches
surface 2.

F,_4 : fraction of the energy leaving surface 2 which reaches
surface 1.
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Other names for the radiation shape factor are view factor, angle factor, and confieuration
factor. The energy leaving surface 1 and arriving at surface 2 is

EnAiFn

and the energy leaving surface 2 and arriving at surface 1 is

EnArFy

Since the surfaces are black, all the incident radiation will be absorbed, and the net energy
exchange is
EpA1Fin— EnAyFy =01

If both surfaces are at the same temperature, there can be no heat exchange. thatis. 012 =0.
Also.for 11 =15

Ep=Ep
so that
AtFp=AFy [8-18]
The net heat exchange is therefore
012 =A1F12(Ep — Ep) = Ay Fa1(Epy — Epp) (8-19]
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Figure 8-12 | Radiation shape factor for radiation between parallel rectangles.
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Heat Transfer Between Black Surfaces EXAMPLE 8.2

Two parallel black plates 0.5 by 1.0 m are spaced 0.5 m apart. One plate 1s maintamed at 1000°C
and the other at 500°C. What 1s the net radiant heat exchange between the two plates?

B Solution

The ratios for use with Figure 8-12 are
Y o5 o X_1o0
D 05 D 05

so that Fj5 = 0.285._ The heat transfer is calculated from
q=AyFy(Epy — Epy) =0A Fip (T} — T3)
— (5.669 x 10~°)(0.5)(0.285)(1273* — 7734
—1833kW [62,540 Btu/h]
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Figure 8-13 | Radiation shape factor for radiation between parallel equal
coaxial disks.
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Figure 8-14 | Radiation shape factor for radiation between perpendicular rectangles with a
comumon edge.
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Figure 8-15 | Radiation shape factors for two concentric cylinders of finite
length. (a) Outer cylinder to itself: (&) outer cylinder to inner

cylinder.
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Figure 8-16 | Radiation shape factor for radiation between two parallel
coaxial disks.
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8-5 | RELATIONS BETWEEN SHAPE FACTORS

Some useful relations between shape factors may be obtained by considering the system
shown in Figure 8-19. Suppose that the shape factor for radiation from Aj to the combined
area A1 > is desired. This shape factor must be given very simply as

Fs12=F_1+F_» [8-25]

that is. the total shape factor is the sum of its parts. We could also write Equation (8-25) as

A3f3_10=A3F_1+A3F3_» [8-26]

and making use of the reciprocity relations

AsF3_10=A1pF12 3
A3k 1 =A1F 3
A3F3 2 =AF 3

the expression could be rewritten

A1 2Fl 2 3=A1F1 3+ AP 3 [8-27]

which simply states that the total radiation arriving at surface 3 is the sum of the radiations
from surfaces 1 and 2. Suppose we wish to determine the shape factor F;_3 for the surfaces
in Figure 8-20 in terms of known shape factors for perpendicular rectangles with a common
edge. We may write

Fia3=F-a2+Fi3

in accordance with Equation (8-25). Both Fj_»>3 and Fij_» may be determined from
Figure 8-14. so that F;_s3 is easily calculated when the dimensions are known. Now con-
sider the somewhat more complicated situation shown in Figure 8-21. An expression for the
shape factor F7_4 is desired in terms of known shape factors for perpendicular rectangles

Figure 8-19 | Sketch showing some
relations between shape
factors.

Fy 1p=F5_1%F;_5
A3F5_ 13 =A3F3_ j+A3F3 5
AyaFrg-3=4)F) 3+ A Fy 4
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Figure 8-20 Figure 8-21
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with a comumon edge. We write

F————

.
£
e

;
.r‘ ‘.

A1pFilo 34=A1F1 344+ A F 34 [a]

in accordance with Equation (8-25). Both F12_34 and F,_34 can be obtained from
Figure 8-14, and Fj_3 4 may be expressed

AtFi 3a=A1F 3 +A1 4 (]

Also
AipFip 3=A1F1 3+ AF 3 [c]

Solving for A; F1_3 from (c). inserting this in (b). and then inserting the resultant expression
for A1 F1_3 4 in (@) gives

AipF1 2 34=A12F15 3 —A)Fs 3+ A1F1_ 4+ A F 34 [d]
Notice that all shape factors except F;_4 may be determined from Figure §-14. Thus

1
F a= A—I(Al_z Fi3 34+ A F 35— A19F13 3 —AxF> 34) [8-28]

In the foregoing discussion the facit assumption has been made that the various bodies
do not see themselves. that is.

Fli=F»=F;3=0

To be perfectly general, we must include the possibility of concave curved surfaces, which
may then see themselves. The general relation is therefore

n
Y Fy=1.0 [8-29]

where Fjj is the fraction of the total energy leaving surface i that arrives at surface j. Thus
for a three-surface enclosure we would write

Fii+ Fio+ Fi3=1.0

and Fjy represents the fraction of energy leaving surface 1 that strikes surface 1. A certain
amount of care is required in analyzing radiation exchange between curved surfaces.
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Shape-Factor Algebra for Open Ends

of Cylinders EXAMPLE 83

Two concentric cylinders having diameters of 10 and 20 cm have a length of 20 em. Calculate the
shape factor between the open ends of the cylinders.

B Solution
We use the nomenclature of Figure 8-15 for this problem and designate the open ends as sur-
faces 3 and 4. We have L/ry =20/10=2.0 and ry/ry =0.5; so from Figure 8-15 or Table 8-2
we obtaimn

Fr1=0.4126 Fyy =0.3286

Using the reciprocity relation [Equation (8-18)] we have

A\Fpp=AyFy  and  Fyy=(dy/dy)Fy; =(20/10)(0.4126) = 0.8253

For surface 2 we have
i+ Fa+FB3+Fy=1.0

From symmetry Fy3 = Fy4 so that
oy =Fu— (%) (1—0.4126 — 0.3286) = 0.1294
Using reciprocify again,
AyFi3=A3Fy

and 20)(20
b
Fy= {1—}0.1294=0.6901
7(202 —10%)/4

We observe that Fj = F33 = Fg4 =0 and for surface 3
F31+F3+F34=1.0 [a]

So, 1f F31 can be determined, we can calculate the desired quantity F34. For surface 1
Fio+ Fi3+ Fi3=1.0
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and from symmetry F;3 = Fj4 so that

1
Fi3= (5) (1—0.8253) =0.0874

Using reciprocity gives

Ay F13 = A3 F34

T(10)(20
F3 = (10)( ,f 0.0874 =0.233
T(202 — 102)/4

Then, from Equation (a)
F34=1—-0.233 — 0.6901 =0.0769

EXAMPLE 8.4 Shape-Factor Algebra for Truncated Cone

A truncated cone has top and bottom diameters of 10 and 20 cm and a height of 10 em. Calculate
the shape factor between the top surface and the side and also the shape factor between the side
and itself.

B Solution
We employ Figure 8-16 for solution of this problem and take the nomenclature as shown, desig-
nating the fop as surface 2. the bottom as surface 1, and the side as surface 3. Thus, the desired
quantities are Fr3 and F33. We have L/ri =10/10=1.0 and r2/L =5/10=0.5. Thus, from
Figure 8-16

Fi12=0.12

From reciprocity [Equation (8-18)]
AP =AM Fy
Fr1 = (20/10)2(0.12) =0.48

and
Fp=0
50 that
i+ Fpi=1.0
and
Fa3=1—048=0.52
For surface 3.

1+ Fp+F3=1.0 [a]
so we must find F31 and F35 n order to evaluate F33. Smce Fj; =0, we have

F12+F13:1.0 and F13=1—0.].2=G.83

and from reciprocity
Ay Fi3=A3F5 (0]
The surface area of the side 1s
1/2
Ay =m(ri+nr) [{rI — .-'212 - Lg]

— (5 + 10)(5% + 105172 — 526.9 cm?
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So, from Equation (&)
(102

F31=——"0.88=0.525
526.9

A similar procedure applies with surface 2 so that

by 4 5}2
I35 = {—{}.52 =0.0775
526.9

Fmally. from Equation (a)

F33=1—0.525—0.0775=0.397

Shape-Factor Algebra for Cylindrical Reflector

The long circular half-cylinder shown in Figure Example 8-5 has a diameter of 60 cm and a square
rod 20 by 20 cm placed along the geometric centerline. Both are surrounded by a large enclosure.
Find Fyo. Fi3. and Fyj in accordance with the nomenclature in the figure.

Figure Example 8-5

H Solution
From symmetry we have

In general, Fiy + Fs + Fy3 =1.0. To aid in the analysis we create the fictitious surface 4 shown
as the dashed line For this surface, Fy; =1.0. Now. all radiation leaving surface 1 will arrive
either at 2 or at 3. Likewise. this radiation will arrive at the imaginary surface 4. so that

Fla=Fp + Fi3 [D]
From reciproeity,
A1 Fla=A4Fy
The areas are, for unit length,
Ay =nd/2 =7(0.6)/2 =0.942
Ay =02+ )[0.1)2 + (0.2)*1V2 = 0.647
Ay = (4)(0.2)=0.8

so that A (0.647)(1.0)
4 y g
Fra— gl g c
M=y 0.942 []
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We also have, from reciprocity,
Ay By =A1Fpp
> A 0.8)(0.5
2 . (0805

Fp—t%
B=407 8T o

=0.425 [d]

Combining (b}, (c), and (d) gives
Fy3 =0.686 — 0.425=0.261
Finally,
Fi=1—F1—F3=1—-0425-0.261=0.314

This example illustrates how one may make use of clever peometric considerations to calculate
the radiation shape factors.

8-6 | HEAT EXCHANGE BETWEEN
NONBLACKBODIES

In addition to the assumptions stated above, we shall also assume that the radiosity
and urradiation are uniform over each surface. This assumption is not strictly correct. even
for ideal gray diffuse surfaces. but the problems become exceedingly complex when this
analytical restriction is not imposed. Sparrow and Cess [10] give a discussion of such
problems. As shown in Figure 8-24, the radiosity is the sum of the energy emitted and the
energy reflected when no energy is transmitted. or

J=€Ep+ pG [8-36]

where € is the emissivity and Ej, is the blackbody emissive power. Since the transmissivity
is assumed to be zero. the reflectivity may be expressed as

p=l—a=1—¢

so that
J=€eEp+(1—€)G [8-37]
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